Integration by Parts

Section 6.3

Recall the product rule:

$$
\begin{array}{r}
(u v)^{\prime}=u v^{\prime}+v u^{\prime} \\
\int(u v)^{\prime}=\int u d v+\int v d u \\
u v=\int u d v+\int v d u \\
\int u d v=u v-\int v d u
\end{array}
$$

Examples:

$$
\begin{array}{ll}
\int \frac{x}{e^{x} d x} \\
u & u=x
\end{array} d u=d x \quad d v=e^{x} d x
$$

$$
\left.x e^{x}+e^{x} \cdot(1)-e\right)
$$

$$
x e^{x}+y^{x}-y^{x}
$$

Examples:

$$
\begin{aligned}
& \int \ln x d x \quad u=\ln x \quad d u=11 x d x \quad v=d x \\
& x \ln x-\int 1 d x \\
& x \ln x-x+c
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \begin{aligned}
& \int_{0}^{1} \tan ^{-1} x d x \quad=\tan ^{-1} x d v=d x \\
& d u=\frac{1}{1+x^{2}} d x \\
& x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x \quad u=x \\
& u=1+x^{2} \\
& d u=2 x d x
\end{aligned} \\
& x \tan ^{-1} x-\frac{1}{2} \int \frac{1}{u} d u / \\
&\left.x \tan ^{-1} x-\frac{1}{2} \ln \left|1+x^{-1}\right|\right]_{0}^{1}=\tan ^{-1}(1)-\frac{1}{2} \ln |2|-0 \tan ^{-1}(0)+\frac{1}{2} \ln |1| \\
&=\frac{\pi}{4}-\frac{1}{2} \ln 2
\end{aligned}
$$

How do you know what to pick for u ?

Tabular Integration: works for PE or PT problems

$$
\begin{aligned}
& \int x^{2} e^{-x} d x=-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}+C \\
& +\frac{u}{x^{2}} \frac{d v}{e^{-x}} \quad--e^{-x}\left(x^{2}+2 x+2\right)+C \\
& +2 x-e^{-x} \\
& +2 e^{-x} \\
& -0 e^{-x}
\end{aligned}
$$

Modified Table: works for ET problems only

$$
\begin{aligned}
& 2 \int e^{x} \cos x d x=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d y \\
& +\frac{u}{e^{x}} \frac{d v}{\cos x} \quad \not 2 \int e^{x} \cos x d x=\frac{e^{x} \sin x+e^{x} \cos x+c}{2} \\
& -e^{x^{x}} \sin x \\
& +e^{x^{x}-\cos x}
\end{aligned}
$$

Modified Table: works for ET problems only

$$
\begin{array}{ll}
\int e^{2 x} \cos 3 x d x & =\frac{1}{3} e^{2 x} \sin 3 x+\frac{2}{9} e^{2 x} \cos 3 x-\frac{4}{9} \int e^{x} \cos 3 x d x \\
+\frac{u}{e^{2 x}} \frac{d v}{\cos 3 x} & \frac{13}{9} \int e^{2 x} \cos 3 x d x=\frac{1}{3} e^{2 x} \sin ^{3} x+\frac{2}{9} e^{2 x} \cos 3 x \\
-2 e^{2 x} \frac{1}{3} \sin ^{3} x & \int e^{2 x} \cos 3 x d x=\frac{9}{13}\left(\frac{1}{3} e^{2 x} \sin 3 x+\frac{2}{9} e^{2 x} \cos ^{3} x\right)+C \\
+\int 4 e^{2 x^{3}}-\frac{1}{9} \cos 3 x &
\end{array}
$$

Numerical Example:

$$
\int_{0}^{3} x^{2} f^{\prime \prime}(x) d x
$$

x	0	1	2	3
$f(x)$	5	2	3	6
$f^{\prime}(x)$	-3	1	3	4

$$
\left.\begin{array}{rl}
& \frac{u}{x^{2}} \frac{d v}{f^{\prime \prime}(x)} \\
- & 2 x f^{\prime}(x) \\
+ & 2 v f(x) \\
- & 0 \int f(x) d x
\end{array}\right\} \begin{aligned}
& \left(x^{2} f^{\prime}(x)-2 x f(x)\right]_{0}^{3}+2 \int_{0}^{3} f(x) d x \\
& 3^{2} f^{\prime}(3)-2(3) f(3) \\
& 9(4)-6(6)+2\left[\frac{1}{12}(1)[5+2(2)+2(3)+6]\right.
\end{aligned}
$$

Homework:

Day 1: Section 6.3 WS - odds Day 2: AP Packet \#54-59

